
Recursive Functions 

Computability and Logic 



What we’re going to do 

• We’re going to define the class of recursive functions. 
• These are all functions from natural numbers to natural 

numbers. 
• We’ll show that all recursive functions are Abacus-

computable* (and therefore also Turing-computable) 
• Later, we’ll also show that all functions (from natural numbers 

to natural numbers) that are Turing-computable* are 
recursive. 

• Hence, the class of recursive function will coincide with the 
set of all Turing-computable* functions (and therefore also 
with the set of all Abacus-computable* functions). 



Primitive Functions 

• z: the zero function 
– z(x) = 0 for all x 

• s: the successor function 
– s(x) = x + 1 for all x 

• idn
m: the identity function 

– idn
m(x1, …, xn) = xm for any x1, …, xn and 1≤m≤n 

 
• All primitive recursive functions are recursive 

functions 
 
 

 



Operations on Functions 

• On the next slides we’ll cover 3 operations on functions 
that generate functions from functions: 
– Composition 
– Primitive Recursion 
– Minimization 

• Performing any of these 3 operations on recursive 
functions generates a new recursive function. 

• In fact, the set of recursive functions is defined as the 
set of all and only those functions that can be obtained 
from the primitive functions, and the processes of 
composition, primitive recursion, and minimization. 
 



Composition 

• Given functions f(x1, …, xm), g1(x1, …, xn), …, 
gm(x1, …, xn), the composition function Cn[f, g1, 
…, gn] is defined as follows: 
–  Cn[f, g1, …, gm](x1, …, xn) = f(g1(x1, …, xn), …, gm(x1, 

…, xn)) 



Examples Composition 

• Cn[s,z]: 
– For any x: Cn[s,z](x) = s(z(x)) = s(0) = 1 
– So, where const1(x) = 1 for all x, we now know that const1 

is a recursive function. 

• Cn[s,const1] 
– For any x: Cn[s,const1](x) = s(const1(x)) = s(1) = 2 
– So, where const2(x) = 2 for all x, we now know that const2 

is a recursive function. 

• Etc. 
• We thus have that for any n: where constn(x) = n for 

all x, constn is a recursive function. 



Primitive Recursion 

• Like composition, primitive recursion is a well-
known operation: 
– Define the 0 case 
– Define the x+1 case in term of the x case 

 

• However, before formally defining the 
operation of primitive recursion, let’s start 
with some intuitive examples. 



Addition 

• We can define addition in the following 
recursive way: 
– x + 0 = x 
– x + y’ = (x + y)’ (where x’ is the successor of x) 

 
• Somewhat more formally: 

– sum(x,0) = x 
– sum(x,y’) = sum(x,y)’ 



Multiplication and Exponentiation 

• We can likewise define multiplication 
recursively: 
– prod(x,0) = 0 
– prod(x,y’) = prod(x,y) + x 

 
• And exponentiation: 

– exp(x,0) = 1 (so this assumes we define 00 = 1) 
– exp(x,y’) = exp(x,y) * x 



Formal Definition of  
Primitive Recursion 

• Given functions f(x1, …,xn) and g(x1, …,xn, y, z), 
the primitive recursive function Pr[f,g] is 
defined as follows: 
– Pr[f,g](x1, …,xn, 0) = f(x1, …,xn)  
– Pr[f,g](x1, …,xn, y’) = g(x1, …,xn, y, Pr[f,g](x1, …,xn, y)) 
– (so the ‘y’ is the variable you are recursing over 

down to 0. This recursion happens when we plug 
in Pr[f,g](x1, …,xn, y) for z in g(x1, …,xn, y, z)) 

• If f and g are recursive, then Pr[f,g] is recursive 
as well. 



Examples Primitive Recursive 
Functions in Formal Format 

• Addition: 
– sum(x,0) = x, i.e. f(x) = x, i.e. f = id1

1 
– sum(x,y’) = sum(x,y)’, i.e. g(x,y,z) = s(z), i.e. g = Cn[s, id3

3] 
– So, sum(x,y) = Pr[id1

1, Cn[s, id3
3]] 

 
• Multiplication: 

– prod(x,0) = 0, i.e. f(x) = 0, i.e. f = z 
– prod(x,y’) = prod(x,y) + x, i.e. g(x,y,z) = z + x, i.e. g = 

Cn[sum,id3
3,id3

1] 
– So, prod(x,y) = Pr[z, Cn[sum,id3

3,id3
1]] 

– Filling in sum: prod(x,y) = Pr[z, Cn[Pr[id1
1, Cn[s, id3

3]],id3
3,id3

1]] 
 

• I’ll spare you the formal exponentiation case! 
 



Factorial 

• Let’s do the ‘classic’ recursive definition. 
• Factorial: 

– fac(0) = 1 
– fac(y’) = fac(y) * y’ 

• If we try to put this into a formal format, we find we 
have a problem: for f, we need to use a const1 
function, but … there is no x to use as its argument! 
 



Using Dummy Variables 

• So, we’ll add a ‘dummy’ variable: 
– dummyfac(x,0) = 1 
– dummyfac(x,y’) = dummyfac(x,y) * y’ 
– So, dummyfac(x,y) = Pr[const1,Cn[prod,id3

3,Cn[s,id3
2]]] 

– fac(x) = dummyfac(x,x), i.e. fac(x) = Cn[dummyfac,id1
1,id1

1] 
– So, fac(x) = Cn[Pr[const1,Cn[prod,id3

3,Cn[s,id3
2]]],id1

1,id1
1] =  

 Cn[Pr[Cn[s,z],Cn[Pr[z, Cn[Pr[id1
1, Cn[s, id3

3]], id3
3, id3

1]], 
id3

3, Cn[s,id3
2]]], id1

1, id1
1] 

• Yikes! 
• From now on, we’ll accept the informal (and certainly much 

more readable!) explication of the factorial function as a 
demonstration that the factorial is a recursive function. 



Bounded Sum 

• Where f(x1, …,xn, y) is a function, define 
Sum[f] as follows: 
 

 
• If f is recursive, then Sum[f] is recursive, since: 
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Bounded Product 

• Where f(x1, …,xn, y) is a function, define 
Prod[f] as follows: 
 

 
• If f is recursive, then Prod[f] is recursive, since: 
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Modified Predecessor 

• Let pred(x) = x-1 for x > 0, and pred(0) = 0 
• pred(x) is recursive, since: 

– pred(0) = 0 
– pred(y’) = y 

 
• So notice that we can fit the pred function 

into the (informal) format of the primitive 
recursion operation, even though it doesn’t 
actually recurse in any way! 



Modified Difference 

• Define diff(x,y): 
– diff(x,y) = x – y if y ≤ x 
– diff(x,y) = 0 otherwise. 

 
• diff(x,y) is recursive, since: 

– diff(x,0) = x 
– diff(x,y’) = pred(diff(x,y)) 



Signum Functions 

• Define sg(x) = 1 if x > 0, and sg(0) = 0. 
• Define sg’(x) = 0 if x > 0, and sg’(0) = 1. 

 
• These are recursive, because: 

– sg’(x) = diff(1,x) 
– sg(x) = diff(1,sg’(x)) 



Primitive Recursive Functions 
• The set of all primitive recursive functions is the set of all 

and only those functions that can be obtained from the 
primitive functions, and the processes of composition and 
primitive recursion (so no minimization!) 

• Clearly: 
– All primitive recursive functions are recursive functions 
– In fact, all functions we have seen so far are primitive recursive 

functions 
– In particular, all primitive functions (z,s,id) are primitive 

recursive functions 
• Also, all primitive recursive functions are total functions 

– So for a computable partial function to be recursive, we need to 
expand our definition of recursive functions 



Minimization 

• Where f(x1, …,xn, y) is a function, define Mn[f] as follows: 
– Mn[f](x1, …,xn) = y if f(x1, …,xn, y) = 0, and for all x < y: f(x1, …,xn, x) > 0 
– Mn[f](x1, …,xn) = [undefined] otherwise 

 

• By definition, if f is recursive, then Mn[f] is recursive as well. 
 

• Notice that Mn[f](x1, …,xn) can be undefined for 2 reasons: 
– If is a total function, but for all y: f(x1, …,xn, y) ≠ 0 
– If is a partial function, and you get to an undefined value before you 

get to a 0 
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