
Recursive Functions

Computability and Logic

What we’re going to do

• We’re going to define the class of recursive functions.
• These are all functions from natural numbers to natural

numbers.
• We’ll show that all recursive functions are Abacus-

computable* (and therefore also Turing-computable)
• Later, we’ll also show that all functions (from natural numbers

to natural numbers) that are Turing-computable* are
recursive.

• Hence, the class of recursive function will coincide with the
set of all Turing-computable* functions (and therefore also
with the set of all Abacus-computable* functions).

Primitive Functions

• z: the zero function
– z(x) = 0 for all x

• s: the successor function
– s(x) = x + 1 for all x

• idn
m: the identity function

– idn
m(x1, …, xn) = xm for any x1, …, xn and 1≤m≤n

• All primitive recursive functions are recursive

functions

Operations on Functions

• On the next slides we’ll cover 3 operations on functions
that generate functions from functions:
– Composition
– Primitive Recursion
– Minimization

• Performing any of these 3 operations on recursive
functions generates a new recursive function.

• In fact, the set of recursive functions is defined as the
set of all and only those functions that can be obtained
from the primitive functions, and the processes of
composition, primitive recursion, and minimization.

Composition

• Given functions f(x1, …, xm), g1(x1, …, xn), …,
gm(x1, …, xn), the composition function Cn[f, g1,
…, gn] is defined as follows:
– Cn[f, g1, …, gm](x1, …, xn) = f(g1(x1, …, xn), …, gm(x1,

…, xn))

Examples Composition

• Cn[s,z]:
– For any x: Cn[s,z](x) = s(z(x)) = s(0) = 1
– So, where const1(x) = 1 for all x, we now know that const1

is a recursive function.

• Cn[s,const1]
– For any x: Cn[s,const1](x) = s(const1(x)) = s(1) = 2
– So, where const2(x) = 2 for all x, we now know that const2

is a recursive function.

• Etc.
• We thus have that for any n: where constn(x) = n for

all x, constn is a recursive function.

Primitive Recursion

• Like composition, primitive recursion is a well-
known operation:
– Define the 0 case
– Define the x+1 case in term of the x case

• However, before formally defining the
operation of primitive recursion, let’s start
with some intuitive examples.

Addition

• We can define addition in the following
recursive way:
– x + 0 = x
– x + y’ = (x + y)’ (where x’ is the successor of x)

• Somewhat more formally:

– sum(x,0) = x
– sum(x,y’) = sum(x,y)’

Multiplication and Exponentiation

• We can likewise define multiplication
recursively:
– prod(x,0) = 0
– prod(x,y’) = prod(x,y) + x

• And exponentiation:

– exp(x,0) = 1 (so this assumes we define 00 = 1)
– exp(x,y’) = exp(x,y) * x

Formal Definition of
Primitive Recursion

• Given functions f(x1, …,xn) and g(x1, …,xn, y, z),
the primitive recursive function Pr[f,g] is
defined as follows:
– Pr[f,g](x1, …,xn, 0) = f(x1, …,xn)
– Pr[f,g](x1, …,xn, y’) = g(x1, …,xn, y, Pr[f,g](x1, …,xn, y))
– (so the ‘y’ is the variable you are recursing over

down to 0. This recursion happens when we plug
in Pr[f,g](x1, …,xn, y) for z in g(x1, …,xn, y, z))

• If f and g are recursive, then Pr[f,g] is recursive
as well.

Examples Primitive Recursive
Functions in Formal Format

• Addition:
– sum(x,0) = x, i.e. f(x) = x, i.e. f = id1

1
– sum(x,y’) = sum(x,y)’, i.e. g(x,y,z) = s(z), i.e. g = Cn[s, id3

3]
– So, sum(x,y) = Pr[id1

1, Cn[s, id3
3]]

• Multiplication:

– prod(x,0) = 0, i.e. f(x) = 0, i.e. f = z
– prod(x,y’) = prod(x,y) + x, i.e. g(x,y,z) = z + x, i.e. g =

Cn[sum,id3
3,id3

1]
– So, prod(x,y) = Pr[z, Cn[sum,id3

3,id3
1]]

– Filling in sum: prod(x,y) = Pr[z, Cn[Pr[id1
1, Cn[s, id3

3]],id3
3,id3

1]]

• I’ll spare you the formal exponentiation case!

Factorial

• Let’s do the ‘classic’ recursive definition.
• Factorial:

– fac(0) = 1
– fac(y’) = fac(y) * y’

• If we try to put this into a formal format, we find we
have a problem: for f, we need to use a const1
function, but … there is no x to use as its argument!

Using Dummy Variables

• So, we’ll add a ‘dummy’ variable:
– dummyfac(x,0) = 1
– dummyfac(x,y’) = dummyfac(x,y) * y’
– So, dummyfac(x,y) = Pr[const1,Cn[prod,id3

3,Cn[s,id3
2]]]

– fac(x) = dummyfac(x,x), i.e. fac(x) = Cn[dummyfac,id1
1,id1

1]
– So, fac(x) = Cn[Pr[const1,Cn[prod,id3

3,Cn[s,id3
2]]],id1

1,id1
1] =

 Cn[Pr[Cn[s,z],Cn[Pr[z, Cn[Pr[id1
1, Cn[s, id3

3]], id3
3, id3

1]],
id3

3, Cn[s,id3
2]]], id1

1, id1
1]

• Yikes!
• From now on, we’ll accept the informal (and certainly much

more readable!) explication of the factorial function as a
demonstration that the factorial is a recursive function.

Bounded Sum

• Where f(x1, …,xn, y) is a function, define
Sum[f] as follows:

• If f is recursive, then Sum[f] is recursive, since:

∑
=

=
y

i
nn ixxfyxxf

0
11),,,(),,]([Sum

)0,,()0,,]([Sum 11 nn xxfxxf =

)',,(),,]([Sum)',,]([Sum 111 yxxfyxxfyxxf nnn +=

Bounded Product

• Where f(x1, …,xn, y) is a function, define
Prod[f] as follows:

• If f is recursive, then Prod[f] is recursive, since:

∏
=

=
y

i
nn ixxfyxxf

0
11),,,(),,]([Prod

)0,,()0,,]([Prod 11 nn xxfxxf =

)',,(),,]([Prod)',,]([Prod 111 yxxfyxxfyxxf nnn ×=

Modified Predecessor

• Let pred(x) = x-1 for x > 0, and pred(0) = 0
• pred(x) is recursive, since:

– pred(0) = 0
– pred(y’) = y

• So notice that we can fit the pred function

into the (informal) format of the primitive
recursion operation, even though it doesn’t
actually recurse in any way!

Modified Difference

• Define diff(x,y):
– diff(x,y) = x – y if y ≤ x
– diff(x,y) = 0 otherwise.

• diff(x,y) is recursive, since:

– diff(x,0) = x
– diff(x,y’) = pred(diff(x,y))

Signum Functions

• Define sg(x) = 1 if x > 0, and sg(0) = 0.
• Define sg’(x) = 0 if x > 0, and sg’(0) = 1.

• These are recursive, because:

– sg’(x) = diff(1,x)
– sg(x) = diff(1,sg’(x))

Primitive Recursive Functions
• The set of all primitive recursive functions is the set of all

and only those functions that can be obtained from the
primitive functions, and the processes of composition and
primitive recursion (so no minimization!)

• Clearly:
– All primitive recursive functions are recursive functions
– In fact, all functions we have seen so far are primitive recursive

functions
– In particular, all primitive functions (z,s,id) are primitive

recursive functions
• Also, all primitive recursive functions are total functions

– So for a computable partial function to be recursive, we need to
expand our definition of recursive functions

Minimization

• Where f(x1, …,xn, y) is a function, define Mn[f] as follows:
– Mn[f](x1, …,xn) = y if f(x1, …,xn, y) = 0, and for all x < y: f(x1, …,xn, x) > 0
– Mn[f](x1, …,xn) = [undefined] otherwise

• By definition, if f is recursive, then Mn[f] is recursive as well.

• Notice that Mn[f](x1, …,xn) can be undefined for 2 reasons:
– If is a total function, but for all y: f(x1, …,xn, y) ≠ 0
– If is a partial function, and you get to an undefined value before you

get to a 0

	Recursive Functions
	What we’re going to do
	Primitive Functions
	Operations on Functions
	Composition
	Examples Composition
	Primitive Recursion
	Addition
	Multiplication and Exponentiation
	Formal Definition of �Primitive Recursion
	Examples Primitive Recursive Functions in Formal Format
	Factorial
	Using Dummy Variables
	Bounded Sum
	Bounded Product
	Modified Predecessor
	Modified Difference
	Signum Functions
	Primitive Recursive Functions
	Minimization

